
Sixteen Pixels is (Almost) All You Need:
Crafting Parameterized Image Uncrumpling Models

CS 231N Project Report

Maximilian Du*, Niveditha Iyer*, Tejas Narayanan*

Abstract

As smartphone technology continues to evolve, hand-
held document scanning is becoming more pervasive. These
smartphone scanners must digitally remove creases and
crinkles in a document to ensure the best scan possible. In
a parameterized setting, this uncrumpling task can be con-
sidered as a form of image denoising, or as style transfer. In
our work, we experiment with these approaches. First, we
create a procedurally-generated dataset of pairwise crum-
pled and uncrumpled images. Then, we implement and
compare denoising and style transfer architectures for our
image uncrumpling task. We find that a U-Net architecture
combined with a small (4x4) window PatchGAN performs
better on standard metrics and also preserves more fine-
grained details compared to non-adversarial paradigms
and PatchGANs of larger sizes.

1. Introduction

In recent years, the use of smartphone document scan-
ning has increased greatly. Unlike a flatbed scanner, which
pushes a document against a pane of glass, smartphone
scanning relies on a standard picture taken from a phone
camera. Without being flattened against a pane of glass or
the use of special illumination, any crinkles on the origi-
nal document will show up in the picture. Traditional al-
gorithms for text and line drawing enhancement [7] use
strong transforms that may not generalize to removing crin-
kles from a full-color, high-detail image. In our work, we
use parametric, adversarial approaches to develop a general
uncrumpling algorithm.

The input to our models is an RGB image. We then im-
plement a U-Net autoencoder, which maps from this in-
put image into an output image of the same dimensions
(128 × 128 × 3). We will add an adversarial component
to the U-Net for later comparisons, which uses a discrimi-
nator network that maps from images to binary predictions.

In our experiments, we will see that the simple image
regression U-Net will reduce the lighting artifacts of the

Figure 1. Uncrumpling Images using Adversarial Learning.
Unlike existing document enhancement methods, our model is
able to remove the lighting disruptions of crumpling while retain-
ing color. It is also able to infer the image distortion and reverse
the majority of its effects while keeping as many image details as
possible.

crumpling but struggles to produce a sharp image. For ad-
versarial approaches, we will see that reducing the receptive
field of the discriminator to a drastically smaller (4×4) win-
dow will encourage the generator to output sharper images
(Figure 1) and outperform the image regression U-Net on
most standard metrics.

2. Related work
To our knowledge, there is not explicit prior work that

has done a similar uncrumpling task. However, as humans
we can perform this uncrumpling in our minds as we look
at a crumpled piece of paper, which means that such infer-
ences is possible. In the following sections, we will look at

1

how existing methods might handle our uncrumpling task.

2.1. Document Enhancement

Document enhancement software is already imple-
mented in mainstream scanning services, like Apple Notes
[2] and the Dropbox smartphone application [1]. While they
are highly accurate at isolating handwritten or typed text on
a document, they often do not go beyond a linear transfor-
mation to reduce the effects of a tilted phone. They also
apply aggressive contrast-enhancing algorithms which out-
puts a greyscale image. Taken together, it can be seen in
the lower left corner of Figure 1 that these off-the-shelf al-
gorithms are not optimized for full-color enhancements of
crumpled images. Even full-color scans, like those created
by Apple Notes, commonly apply simple lighting adjust-
ments and do not account for the artifacts introduced by
crumpling.

There exists more sophisicated classical algorithms that
improve performance. For example, CleanPage [7] uses the
natural motion of the operator’s smartphone to take a se-
quence of images under different lighting conditions. Then,
they use standard alignment algorithms to stack the pictures
and take the median of each pixel. Different orientations
create different lighting on the crumples, so a pixel-wise
median can mitigate some of the crumpled image’s lighting
artifacts.

However, CleanPage is targeted for whiteboard writing,
which is still a handwriting enhancement task. With im-
ages like those of Figure 1, the crumpling introduces vi-
sual distortions in addition to lighting artifacts, and visual
distortions may not be easily removed through pixel-wise
medians. With such a complicated image space, we might
consider using a parametric model.

2.2. Uncrumpling as Denoising

We can consider the crumpling operation on the image
as a form of special noise. Indeed, in procedural gener-
ation, the ground truth image is crumpled by applying a
sequence of semi-reversible linear transformations. There
are many works on denoising images, and many recent ap-
proaches rely on autoencoders [16, 4]. Autoencoders com-
press a noisy image to a lower-dimensional latent space and
then decompress them into a denoised image [16]. Ideally,
this bottleneck will force a compact, noiseless representa-
tion in the latent space. The autoencoder is trained through
noisy-clean paired data, which can be generated through
self-supervision. There are many variants to the autoen-
coder. For example, [11] proposes using dropout layers
to increase robustness, and [17] proposes learning the pure
noise from an image and then performing a pixel-wise dif-
ference operation. In total, the convolutional autoencoder is
a simple yet strong baseline.

One major modification to the autoencoder is the U-

Network. It was originally proposed as a model that outputs
segmentations of cells [13], but it has been widely adopted.
U-Net applies a bottleneck on the image features, but it also
adds connections between the encoder and decoder layers.
In this way, the latent space no longer needs to contain all
the information necessary for image reconstruction. In our
work, we try both simple convolutional autoencoders and
U-Networks.

2.3. Uncrumpling as Style Transfer

However, unlike random noise, the crumpling is a spe-
cial operation that has a distinctive visual properties. There-
fore, we can also look at the crumpled and uncrumpled im-
ages as different styles. There has been significant work in
the area of style transfer, starting from gram matrix meth-
ods [8] and moving more recently to adversarial approaches
[9]. As a key example, Pix2Pix [10] was successful in map-
ping from images of two different domains, given the ex-
istence of style-style image pairs. Pix2Pix uses a U-Net as
the generator and a lightweight discriminator that is applied
patch-wise across the generated image. The authors experi-
ment with relatively large patches, ranging from 16× 16 to
286 × 286. In our work, we will explore using Pix2Pix on
a smaller image and reducing the patch size to emphasize
high-frequency details.

Later, CycleGAN [18] was also successful in mapping
between image domains without the need of image pairs.
Currently, CycleGAN is among the state of the art for style
transfer between domains. In our work, we implement mod-
ified versions of Pix2Pix and CycleGAN architectures, then
we compare them to U-Net image regression.

3. Methods
Mathematically, we can formulate the task as follows.

Given crumpled images x, smooth images y, and loss
function L, we want to find a parameterized mapping fθ
such that

θ := argmin
θ

L(fθ(x), y)

We call x̂ = fθ(x) as the uncrumpled image. In the
following sections, we will discuss the various structures
for f and loss functions L.

3.1. U-Net Image Regression

The U-Network is a direct convolutional autoencoder
that reduces the image down to a single feature vector
through repeated convolutions, and then uses transposed
convolutions to recreate the image from the feature vec-
tor. The encoding and decoding stacks yield symmetric in-
termediate features, which allows the encoding features to
be stacked channel-wise with their corresponding decoding
features before being run through a transposed convolution

2

Figure 2. U-Network Structure. This is the basic convolutional
autoencoder structure we used throughout this work. Each con-
volutional block reduces the width and height of the features by
2.

block. Channel-wise stacking allows for more information
to pass between the encoder and decoder heads. The trans-
posed convolution filters can learn to select the relevant in-
formation from the encoder features while ignoring the ar-
tifacts introduced by crumpling.

The architecture (Figure 2) is inspired by the generator
found in Pix2Pix [10]. All layers use batchnorm except for
the first, and the first three decoder layers use dropout for
greater robustness. We removed one convolutional block to
accommodate for the smaller image size.

For the simple U-Net, we formulate the regression loss
function as follows:

L(x̂, y) = 1

K

∑
i

∑
j

∑
k

|x̂i,j,k − yi,j,k|

where K is the size of the images. This pixelwise L1
loss encourages each pixel of the output to be as close to
the ground truth as possible. We chose L1 loss because it
reduces the blurriness of the final image [10]. In this form,
the U-Net acts under the denoising paradigm. In the next
section, we will look at how we can augment this structure
to become under the style transfer paradigm.

3.2. Modified Pix2Pix

While the L1 regression loss is lightweight and intuitive,
such pixel distance metrics are not very expressive. Instead,
we can use the same U-Network architecture in an adver-
sarial setup. We define a discriminator gϕ(x, x̂) that takes
in a crumpled image x and a uncrumpled image x̂. The im-
ages are concatenated channel-wise (Figure 3) and then run
through a sequence of the same convolutional blocks used
in the encoder.

Figure 3. Discriminator Structure. This structure, known as a
PatchGAN, is used in our Pix2Pix implementation

Here, unlike U-Net, we do not convolve into a single
feature vector. Rather, we choose to terminate the convo-
lutions early and get a set of predictions. For example, as
can be seen in Figure 3, if the model is terminated after four
convolutions, it will return an 8× 8 matrix of discriminator
scores. Each element in this matrix corresponds to a predic-
tion made from a receptive field of 46 × 46. As such, this
output is akin to taking a 46 × 46 convolutional classifier
and convolving it with stride 16 over the original 128× 128
image, with sufficient padding. This smaller effective view-
ing area is akin to looking at the “style” of the image [10]
and may encourage more fine-grained details. The Pix2Pix
paper calls it a PatchGAN.

The discriminator is trained to output high probabilities
if the two images are from a crumpled–smooth ground truth
pair, and low probabilities if the two images are from a
crumpled–uncrumpled generated pair. To do this, we use bi-
nary cross entropy (BCE) through all of the patches (Figure
4). For crumpled–smooth pairs, we push the discriminator

3

Figure 4. Discriminator Training in Pix2Pix. We use Binary
Cross Entropy (BCE) to fit the discriminator

close to 1, and for crumpled–uncrumpled pairs, we push the
discriminator close to 0.

The generator is trained with a hybrid loss function, as
seen below:

L = λLimg + Ld

Here, Limg is the same L1 loss as described in the U-
Network. The Ld is defined as follows:

Ld = BCE(gϕ(x, fθ(x)), {1})

where {1} is a matrix of ones whose shape matches the
PatchGAN output. Intuitively, we are trying to make the
discriminator gϕ think that x̂ is as real as possible. Between
the two losses, we weigh them with λ, which is a hyperpa-
rameter.

Figure 5. Generator Training in Pix2Pix. We use a combined
loss function to encourage the generator to produce realistic im-
ages.

As [10] mentions, different patch sizes can yield differ-
ent properties in the images. In our work, we try receptive

field sizes of 1, 4, 10, 22, 46, and 94 and we compare them
with various metrics in our results.

3.3. CycleGAN

Pix2Pix is a much more expressive method than U-
Net, but it still requires that the images be in crumpled-
uncrumpled pairs. Instead, we can use a newer method, Cy-
cleGAN, that eases the restriction of paired data and instead
utilizes cycle-consistency in its loss [18].

In addition to a forward generator fθf that turns crum-
pled images into their uncrumpled form, we define a back-
ward generator f−1

θb
that turns uncrumpled images back into

their crumpled form. Then, we can incorporate cycle con-
sistency into our loss by pushing f−1

θb
(fθf (x)) close to x.

There are also two discriminators. We push gϕf
to output

1 if an image is a real uncrumpled image, and 0 if an image
is an uncrumpled image generated from fθf . Similarly, we
push a second discriminator g−1

ϕb
to output 1 if an image is a

real crumpled image, and 0 if an image is a crumpled image
generated from f−1

θb
.

Figure 6. CycleGAN Training Objectives. There are five losses
that all contribute to the CycleGAN objective.

The CycleGAN generator objective is as follows:

4

L(fθf , f
−1
θb

, gϕf
, g−1

ϕb
) = LGAN(fθf , gϕf

, x, y)

+ LGAN(f
−1
θb

, g−1
ϕb

, y, x)

+ λ1Lcyc(fθf , f
−1
θb

, x, y)

+ λ2Lidentity(fθf , f
−1
θb

, x, y)

These loss components are defined as follows:

LGAN(f, g, x, y) = MSE(g(f(x)), 1)

Lcyc(f, f
−1, x, y) = L1(f−1(f(x)), x) + L1(f(f−1(y)), y)

Lidentity(f, f
−1, x, y) = L1(f(y), y) + L1(f−1(x), x)

where λ1 and λ2 are hyperparameters to weight the cycle
and identity losses.

3.4. Ablation: Baseline Autoencoder

For the baseline model, we used a simple convolutional
autoencoder. The structure is the same as seen in Figure
2, but all the U-connections have been removed. By run-
ning this baseline, we want to see the impact of the U-
connections on performance.

3.5. Code Adaptation

Nearly all the code was written by us. As cited in our
repository, the CycleGAN implementation was taken from
a blog post [5] and adapted into PyTorch [12]. The Pix2Pix
was implemented from scratch, using some structure details
as specified in the appendix of [10] and adjusting others
based on our specific task.

4. Dataset and Features
We chose the face-blurred validation set of the ImageNet

Large-scale Visual Recognition Challenge (ILSVRC) as our
dataset [14], which contained 50,000 images.

Next, we used Blender [6], a free and open-source 3D
modeling and rendering software, to generate the crumpled-
uncrumpled pairs of images. We wrote a script that per-
formed the following steps for each image in the dataset:

1. Generate a plane and apply the image as a texture

2. Render the output as the 512× 512 uncrumpled image

3. Perform a random crumpling with the subdivide
modifier

4. Render the output as the 512× 512 crumpled image

The image generation took around 4 hours on an
NVIDIA RTX 2080 GPU to generate all 50,000 crumpled-
uncrumpled pairs. They are downsized to 128 × 128, nor-
malized between 0 and 1, and stored in a sampling data

structure for use in training, validation, and testing. Ex-
amples of the crumpled image can be seen in Figure 7.

We loaded 49k crumpled-uncrumpled image pairs to use
as the training data. 128 image pairs from the training set
were used as validation to monitor training progress, and
1k image pairs were used as a held-out test set across all
models.

This method of data generation is highly parameterized.
For future data generation, we are able to modify many pa-
rameters of the environment, including the lighting condi-
tions, amount of crumple, and reflectivity of the surface. We
can also use a larger subset of the ImageNet dataset with no
modification to our data generation pipeline.

Figure 7. Examples of Crumpled-Smooth Pairs in our Dataset.
Note how the crumpling imparts severe lighting artifacts and in
some cases, irreversible distortion. The effect is most pronounced
in images with sharp edges, like the second row.

5. Experiments
5.1. General Training

The models had varying levels of computational com-
plexity and therefore required varying levels of hyperpa-
rameter turning. The non-adversarial models were more
robust to hyperparameters and more lightweight, requiring
around 4 hours to train on an NVIDIA RTX 2080 graphics
card. For the adversarial paradigms, Pix2Pix took around 6
hours, and CycleGAN took around 10 hours. Batch sizes
were adjusted to fit on 8GB of VRAM. For U-Net and
Pix2Pix, the batch size was 32 images. For CycleGAN, the
batch size was 8 images. All models were trained for 50k
steps.

5.2. Metrics

As a simple metric, we used the pixel-wise mean-
squared error (MSE). While this is a standard metric and

5

related to the L1 loss we train on, Figure 9 shows that it
is not very expressive. During training, the MSE decreases
sharply at the beginning and stays at a similar level through-
out training, while the qualitative properties of the output
are changing.

To resolve this, we chose to calculate the Mutual
Information (MI) of the images x1, x2 as defined as fol-
lows:

MI(x1, x2) = DKL(P (x1, x2)||P (x1)P (x2))

To compute P (x1, x2), we flatten out both images and
create a joint distribution intensities using k bins in the his-
togram. To compute P (x1) and P (x2), we marginalize
across one image. A higher mutual information is better,
as it indicates that the two images distributions are less in-
dependent from each other. In addition to the mutual in-
formation score, we can also qualitatively observe the joint
distribution of the images, as seen in Figure 8

Figure 8. Expressing Two Images as a Joint Distribution. More
similar images will have a heavier density on the diagonals. Two
identical images will create a diagonal matrix.

As another metric, we used the Inception Score [3]. This
score is defined between two images x1, x2 as the follows:

IN(x1, x2) = DKL(Iθ(x1)||Iθ(x2))

where Iθ is an InceptionV3 network pretrained on Ima-
geNet [15]. The Inception score is a more expressive form
of the Mutual Information score because the features are
extracted from a learned parameterization. However, even
though inception score can be more correlated with quali-
tative image similarity, the number is less interpretable. As
can be seen in Table 1, we will use all three metrics to com-
pare our models.

5.3. Baseline Autoencoder

As mentioned in the methods, the baseline model is the
U-Net structure inspired from Pix2Pix [10], with the pass-
through connections removed. We train it using an L1 loss

0 10000 20000 30000 40000 50000
0

1

2

3

4

M
SE

MSE in Validation

0 10000 20000 30000 40000 50000

500

750

1000

In
ce

pt
io

n

Inception in Validation

0 10000 20000 30000 40000 50000
Train Steps

50

100

M
I

MI in Validation

Figure 9. Comparison of Loss Function Expressivity (Pix2Pix-
4). Inception and Mutual Information metrics tell us more about
model performance.

using standard parameters on an Adam Optimizer, as rec-
ommended by denoising literature [16]. As can be seen in
Figure 13, the model learns to remove the lighting artifacts
and some of the warping caused by the crumpling process.
However, the output image is highly blurred. This reduced
fidelity is expected, as the bottleneck layer imposes a heavy
restriction on the data that flows through the network.

5.4. U-Net

Next, we added the pass-through connections and trained
using the same loss objective and optimizer. As can be seen
in Table 1, this model performs significantly better than the
baseline across all metrics. This improvement is mostly at-
tributed to the greater flow of information in the network.
Intuitively, the decoder filters now can choose information,
instead of interpolating information. Qualitatively, Figure
13 also shows that the output is less blurry.

Furthermore, the model attempts a stronger compensa-
tion against the warping effects. In Figure 10, we see that
that the original crumple imparted a severe warp in the up-
per lid of a display case. The U-Net learns to fix this. The
same can be said for the firetruck (right column of Figure
13). The house window was significantly damaged by the
crumpling, but the U-Net repaired it. This perhaps even
shows an emergent understanding of perspective.

While the U-Net shows promising behavior, it still yields

6

Figure 10. The Surprising Efficacy of U-Net Edge Recovery.
Without any adversarial losses, the U-Net is able to infer straight
edges in the crumpled image.

an image that is qualitatively blurry. Because the U-Net
is getting enough encoder-decoder information transfer, the
most likely explanation lies in the natural uncrumpling ef-
fect of a Gaussian blur. In this way, the U-Net has learned a
simple shortcut to reducing the loss.

5.5. Pix2Pix

In an attempt to reduce the blurring in the final image,
we experiment with our modified version of Pix2Pix. We
trained with λ = 100 and all the default hyperparameters
recommended by [10].

Figure 11. Pix2Pix-2 Compared to Image Regression U-Net. An
adversarial loss encourages the reconstruction of high-frequency
details.

In our experiments, we looked at various sizes of patches
for the PatchGAN, with a focus on smaller patches (4 ×
4, 10× 10) than what was explored in the original paper.

Indeed, we found that smaller patch sizes yield better
outputs. Qualitatively, in the abacus example (Figure 12)
the 4 × 4 patch is able to reconstruct each bead without
much distortion. In contrast, the 94, 46, and 22 patches
yield heavily distorted details. The 1 × 1 patch does not
have distortion, but it fails to reconstruct the details, due
to lack of spatial context in the discriminator. As another
example, Figure 11 shows that the 4× 4 PatchGAN is able
to reconstruct high-frequency text-like details with better fi-
delity than the U-net.

The quantitative results agree with this qualitative as-

sessment. Table 1 shows that the 4× 4 Pix2Pix version was
able to outperform or tie the U-Network across all metrics.
Intuitively, the small window size forces the GAN to focus
on the higher-frequency details. Performance drops with a
1× 1 patch, as we remove all spatial contexts.

Figure 12. Pix2Pix with Different Patch Sizes. Smaller patch
sizes generally yield higher quality images

5.6. CycleGAN

We trained the CycleGAN model on an Adam optimizer
using hyperparameter values λ1 = 10 and λ2 = 5. As
shown in Figure 13, the model fails to uncrumple the im-
ages; many of the original crumples are readily visible in
the CycleGAN output. Moreover, it adds patches of black
artifacts to the images and darkens the output image in its
transformation. Both qualitatively and quantitatively (Ta-
ble 1), CycleGAN performs the worst out of all the model
structures tested.

We believe that CycleGAN was unable to converge to
an optimal model due to its complex loss function and
its departure from an image regression component. With
Pix2Pix, the L1 image regression loss contributed 100 times
more than the discriminator loss, meaning that the adversar-
ial contribution only made minor corrections to the model.
In the case of CycleGAN, there is no L1 image loss compo-
nent due to the lack of image pairs in its formulation. This
creates instability in the training of the model, even with
the recommended hyperparameters. Additional tuning and
structural modifications may be required for CycleGAN to
perform well on this task.

5.7. Total Comparisons

Figure 13 shows our models run on five notable test im-
ages. The first two contain curves and straight lines that are
severely interrupted by the crumpling operation. U-Net and
Pix2Pix both reverse this transformation, while CycleGAN
and our baseline autoencoder struggle to do so. The third
and fourth image contains very fine-grained details, like text
on a paper and the individual beads of an abacus. These

7

demonstrate high-fidelity reconstruction in the Pix2Pix-4.
Finally, the last image was chosen as a combination of dis-
torted curves and fine detail. Pix2Pix-4 and U-Net recon-
structed nearly all the image features in a sensible manner.

Table 1 shows our model performance metrics as evalu-
ated on 1k held out test images. The best scores are bolded.
As predicted, the inception score reflects the greatest dif-
ference between Pix2Pix-4 and the U-Net, as the pretrained
Inceptionv3 is able to extract similar features that contribute
to our qualitative observations.

The training losses were slightly lower than validation
and test losses, but even when evaluated on the held-out
images, the models performed very similarly. Furthermore,
we had a large dataset of generated images, and in our 50k
steps of training, each training image would have only been
seen around 33 times. Therefore, it is likely that our model
did not significantly overfit on the training data.

Figure 13. Comparing All Models on the Same Data. Pix2Pix
with 2x2 PatchGAN yields the highest quality outputs.

6. Conclusion and Future Work

In our project, we wanted to find a parametric model
that can remove the lighting artifacts and spatial warps im-
parted by crumpling the image. By using a convolutional
U-Network structure combined with an adversarial small-
window PatchGAN loss, we were able to remove these arti-
facts and warps while avoiding image blurring. This perfor-
mance enhancement can be attributed to the high-frequency
details that the discriminator is forced to pay attention to
with such small of a window. The high-frequency-attentive

Metrics
Models 100× MSE Mutual Info Inception

Baseline AE 0.42 ± .01 0.89 ± .01 3.99 ± .07
U-Net 0.26 ± .005 1.12 ± .01 2.56 ± .07

Pix2Pix 94 0.78 ± .01 0.64 ± .01 3.92 ± .07
Pix2Pix 46 0.91 ± .04 0.76 ± .01 3.93 ± .08
Pix2Pix 22 0.62 ± .01 0.8 ± .01 3.79 ± .07
Pix2Pix 10 0.29 ± .01 1.07 ± .01 2.4 ± .07
Pix2Pix 4 0.25 ± .005 1.12 ± .01 2.27 ± .06
Pix2Pix 1 0.29 ± .01 1.09 ± .01 2.73 ± .07

CycleGAN 14.91 ± .17 0.41 ± .005 5.87 ± .09

Table 1. Cross Model Comparisons with Three Metrics. The
Pix2Pix model with a 4x4 PatchGAN ties or outperforms the non-
adversarial U-Net model.

discriminator loss augments the low-frequency-attentive L1
image regression loss, leading to a good quality recon-
structed image.

While the CycleGAN did not show much promise on this
domain, we suspect that with additional tuning and maybe
more data, it may also be able to perform well. CycleGAN
does not require crumpled-smooth image pairs in training,
which will allow it to train on a larger dataset, potentially
even with real-world examples of crumpled and smooth im-
ages. With more compute and memory, we can try increas-
ing the randomization of our procedurally-generated crum-
pled images. Potentially we might randomize the lighting
position, light type, and even the material of the paper. With
these modifications, the model might be able to generalize
zero-shot to real-world examples of crumpled images. This
would provide a tool that may improve image scanning ex-
periences in general.

7. Contributions and Acknowledgements

All three authors contributed equally to this project.
Maximilian Du implemented the Pix2Pix + U-Net struc-
tures and the Mutual Information metric, Niveditha Iyer and
Tejas Narayanan implemented the CycleGAN, and Tejas
Narayanan created the procedurally-generated dataset and
the Inception metric. All members contributed to the writ-
ing of this paper. Briefly, to help parallelize final experi-
ments, an A5000 GPU from the IRIS lab cluster was used.

References
[1] Dropbox: Document and PDF Scanner.
[2] How to scan documents on your iPhone, iPad, or iPod touch.
[3] S. Barratt and R. Sharma. A Note on the Inception Score.
[4] Y. Bengio. Learning Deep Architectures for AI. page 56.
[5] J. Brownlee. How to Implement CycleGAN Models From

Scratch With Keras.

8

[6] B. O. Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation,
Amsterdam, 2022.

[7] J. Courtney. CleanPage: Fast and Clean Document and
Whiteboard Capture. 6(10):102.

[8] L. A. Gatys, A. S. Ecker, and M. Bethge. A Neural Algo-
rithm of Artistic Style.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative Adversarial Networks.

[10] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image
Translation with Conditional Adversarial Networks.

[11] J. Liang and R. Liu. Stacked denoising autoencoder and
dropout together to prevent overfitting in deep neural net-
work. In 2015 8th International Congress on Image and Sig-
nal Processing (CISP), pages 697–701.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[13] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge.

[15] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-
v4, Inception-ResNet and the Impact of Residual Connec-
tions on Learning.

[16] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin.
Deep Learning on Image Denoising: An overview.

[17] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond
a Gaussian Denoiser: Residual Learning of Deep CNN for
Image Denoising. 26(7):3142–3155.

[18] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired
Image-to-Image Translation using Cycle-Consistent Adver-
sarial Networks.

9

